Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Nonlinear Elliptic Equations on Compact Riemannian Manifolds

Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder continuous function on M . We prove the existence of multiple changing sign solutions for equations like ∆gu + hu = |u| ∗−2 u, where ∆g is the Laplace–Beltrami operator and the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.

متن کامل

Nodal solutions to quasilinear elliptic equations on compact Riemannian manifolds

We show the existence of nodal solutions to perturbed quasilinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. A nonexistence result is also given.

متن کامل

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden–Fowler equations

Let (M, g) be a compact Riemannian manifold without boundary, with dimM ≥ 3, and f : R→ R a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem −∆gω + α(σ)ω = K̃(λ, σ)f(ω), σ ∈M, ω ∈ H 1 (M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the f...

متن کامل

Stable Solutions of Elliptic Equations on Riemannian Manifolds

Abstract. This paper is devoted to the study of rigidity properties for special solutions of nonlinear elliptic partial differential equations on smooth, boundaryless Riemannian manifolds. As far as stable solutions are concerned, we derive a new weighted Poincaré inequality which allows to prove Liouville type results and the flatness of the level sets of the solution in dimension 2, under sui...

متن کامل

Instability of Elliptic Equations on Compact Riemannian Manifolds with Non-negative Ricci Curvature

We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N -dimensional Riemannian manifolds without boundary and nonnegative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 1993

ISSN: 0020-9910,1432-1297

DOI: 10.1007/bf01232442